\begin{tabbing} ((\% Switch quantification to T \% \\[0ex]A\=ssert $\forall$$x$:$T$, $y$:$S$. ($f$($y$) = $x$) $\Rightarrow$ $P$($y$)) \+ \\[0ex]CollapseTHEN ( \-\\[0ex]I\=f\=LabL \+\+ \\[0ex][`assertion`,((D 0) \-\\[0ex]CollapseTHENA ((Auto\_aux (first\_nat 1:n) ((first\_nat 1:n \-\\[0ex])\=,\=(first\_nat 4:n)) (first\_tok :t) inil\_term)))$\cdot$ \+\+ \\[0ex];`main`,((InstHyp [$f$($n$);$n$] ({-}1)) \\[0ex] \-\\[0ex]CollapseTHEN ((Auto\_aux (first\_nat 1:n) ((first\_nat 1:n),(first\_nat 3:n)) (first\_tok :t \-\\[0ex]) inil\_term)))$\cdot$]))$\cdot$ \end{tabbing}